
ble involvement of 1 and/or 3 in this scheme is indicated by 
the finding that 1 catalyzed the trimerization of 2-butyne as 
well as oligimerization to tetra-, penta-, and hexamers 
which remain to be fully characterized structurally. 

NOTE ADDED IN PROOF. Through private communica­
tions, we have learned that compound 1 has been prepared 
in other laboratories: H. F. Klein and H. Schmidbaur (per­
sonal communication from H. Schmidbaur) and by Dr. S. 
Ittel (personal communication from S. Ittel). 
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New Peripheral Metal Complexes 
Related to Chlorophyll 

Sir: 

Coordination of metal ions to the four central nitrogen 
atoms of the porphyrin tetrapyrrole macrocycle has been 
the generally recognized mode of metal complex formation 
in chlorophyll and related compounds.1 We report here new 
metal complexes of the chlorophyll macrocycle in which the 
metal is bound to the 0-ketoester system of ring V and 
which we therefore term peripheral complexes. 
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Figure 1. Uv-visible absorption spectra of pheophytin a (1) in dry pyri­
dine (A, - - -), and its peripheral magnesium complex (7) (B, —) in dry 
pyridine, saturated with anhydrous Mg(C104)2- Spectrum A is the typ­
ical chlorin spectrum. 

During metalation studies of pheophorbides of the a se­
ries to the respective chlorophyllides by the method of 
Baum et al.,2 we noticed that the substrates can be divided 
into two classes on the basis of their spectral response to 
Mg2+. Compounds of the first class dissolve in pyridine sat­
urated with Mg(ClCUh to give brown solutions with the uv-
visible spectrum typical of pheophorbides (i.e., Figure IA). 
Compounds of the second class, by contrast, give under the 
same conditions bright green solutions in which the red 
band is broadened and shifted to significantly longer wave­
lengths and the Soret band is split into two complex band 
systems extending from 350 to 500 nm (Figure IB). 

The spectral response to pyridine-Mg2+ is determined by 
whether or not the pheophorbides contain an enolizable /3-
ketoester system in ring V. Pheophytin a (1) and methyl-
pheophorbide a (2) form green solutions, and similar pro­
nounced spectral changes are observed in pheophytin b, and 
bacteriopheophytins a and b.3 These compounds all contain 
an intact ring V /3-ketoester system capable of enolization. 
However, pyromethylpheophorbide a (3),4 9-desoxo-9-hy-
droxymethylpheophorbide a (4),5 and 10-methoxymethyl-
pheophorbide a (5)6 give brown solutions in pyridine with 
spectra unaffected by the presence or absence of 
Mg(ClCUh. In the latter compounds, ready enolization of 
the 0-ketoester system is prevented by elimination of either 
the C-10 ester C = O or the C-9 keto C = O functions or by 
substitution of the enolizable 10-H by an alkoxy group. We 
conclude from this chemical evidence that the observed 

COOR5 

No. Compound R1, R2 R3 R4 R5 

1 Pheophytin a = 0 H COOCH3 phytyl 
2 Methylpheophorbide a = 0 H COOCH3 CH3 

3 Pyromethylpheophorbide a = 0 H H CH3 

4 9-Desoxo-9-hydroxy-
methylpheophorbide a H, OH H COOCH CH3 

5 10-Methoxy-
methylpheophorbide b = 0 OCH3 COOCH3 CH3 
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spectral change is due to a new chemical species rather than 
to a solvent effect7 and that the intact enolizable /3-ketoest-
er system is necessary to form the species which give rise to 
the unusual uv-visible spectrum. /3-Dicarbonyl compounds 
are excellent chelating agents, and therefore a structure in 
which Mg 2 + is bound to the peripheral /3-ketoester system 
seemed plausible. Such a structure (6) is supported by the ir 
and NMR spectra of the new complexes. This structure fur­
ther is consistent with the predicted red shifts for both 
A9,10 and AlO,10a enols8 and the loss of fluorescence ob­
served both in the Molisch phase test intermediate9 and the 
peripheral complexes. 

The ir spectrum of methylpheophorbide a (2) in [2Hs]py­
ridine shows a band at 1741 cm"1 (the 7b- and 10-carbome-
thoxy ester C = O functions) and a band at 1703 cm"1 as­
signed to the free 9-keto group.10 If 2 is dissolved in a dry 
solution of Mg(C104)2 in pyridine, the ester band is re­
duced in intensity by about 50% and shifted to 1735 cm - 1 , 
and the keto band has disappeared. Instead, a strong band 
at 1626 cm - 1 is observed. As the position and intensity of 
this band are typical for chelates of /3-dicarbonyl com­
pounds," we ascribe it to the chelated C = O vibration in 
structure 6. Addition of water regenerates the original ir 
spectrum. 

6.R = CH 
7.R = C11H1:. 

The 1H NMR spectrum of the Mg(II) peripheral com­
plex of methylpheophorbide a (6) (Table I) supports the 
proposed chelate structure as well. The C-10 proton reso­
nance has vanished from the spectrum, but both N - H pro­
ton resonances are still present, as required by structure 6.12 

The incremental chemical shifts of 6 as compared to 213 in­
dicate a uniformly reduced ring current probably resulting 
from the electron-withdrawing effect of the chelate. The op­
posite incremental shifts of the 1Ob-CH3, 7-H, and 8-CH3 

protons are explained by the steric consequences from che­
late formation. These involve not only a coplanar conforma­
tion of the 10-COOCH3 group with the macrocycle but also 
an induced conformation change14 of ring IV due to in­
creased steric hindrance between the substituents at C-7 
and C-7. This brings these three sets of protons more into 
the plane of the macrocycle, and thus in a strongly deshield-
ed region.13 

The peripheral complexes are decomposed by water and 
by Mg(II) chelating agents such as pentan-2,4-dione. Titra­
tion with water has been followed by fluorescence, uv-visi­
ble and 1H NMR spectroscopy over a wide concentration 
and temperature range, and all data confirm an equilibrium 
only between the free pheophorbide a and its peripheral 
complex. The equilibrium between 2 and 6 can be probed in 
detail by 1H NMR spectroscopy, which shows two distinct 
sets of resonances even at elevated temperatures. In no case 
were resonances of a third compound (e.g., a dinuclear pe­
ripheral complex) observed. 

Table I. 'H NMR Spectra (5 (ppm)) Relative to TMS of 
Methylpheophorbide a (2) in [2H5 ] Pyridine and of its Peripheral 
Complex (6) in [2H5] Pyridine, Saturated with Mg(C104)2

a 

/3-H 
a-H 
6-H 
2a-H 
2b-HA 

2b-HB 

10-H 
7-H 
8-H 
1Ob-CH3 

7d-CH3 

5-CH3 

3-CH3 

1-CH1 
8-CH3 

4-CH3 

4a-CH3 

N-H'2 

phorbide 2 

9.75 
9.57 
8.71 
8.08 
6.23 
6.05 
6.61 
4.29 
4.42 
3.76 
3.52 
3.42 
3.21 
3.08 
1.66 
3.54 
1.53 

+0.74 
-1 .48 

plex 6 

9.01 
8.83 
8.00 
7.77 
6.06 
5.87 
— 

4.65 
4.10 
3.83 
3.38 
3.11 
2.95 
2.83 
1.73 
3.29 
1.39 
2.44 
2.04 

AS 

+0.74 
+0.74 
+0.71 
+0.31 
+0.17 
+0.18 

— 
-0 .36 
+0.32 
-0.07 
+0.14 
+0.31 
+0.26 
+0.25 
-0.07 
+0.25 
+0.14 
-1 .70 
-3 .52 

Multiplicity 

S 
S 

S 

d d , / = 11, 17 Hz 
d d , / = 2, 17 Hz 
d d , / = 2, H H z 

S 

m(d) 
q , / = 7 Hz 

S 

S 
S 

S 
S 

d , / = 7Hz 
q,J= 7 Hz 
t, / = 7 Hz 
s, broad 
s, broad 

a A positive sign of the incremental shifts (A6) denotes high-field 
shifts. 

Surprisingly, chlorophyll a itself does not form a periph­
eral complex with Mg(II), although it has an intact /3-ke­
toester system. This finding seems to be complementary to 
the observation that pheophorbides which can form the pe­
ripheral complexes cannot be metalated with M g ( C I O ^ in 
refluxing pyridine,2 while pheophorbides lacking this sys­
tem react smoothly.15 It would appear that the central N-
atoms and the peripheral /3-ketoester system compete and 
that the steric consequences of peripheral complex forma­
tion prevent insertion of Mg(II) into the macrocycle, and 
vice versa. Mg is comparatively loosely bound to the chloro­
phyll macrocycle,16 so that minor changes in the molecule 
can unbalance the system. The corresponding Zn chloro-
phyllides are considerably more stable, and indeed, the pe­
ripheral Zn(II) complex of 2 is converted upon standing at 
room temperature to the chlorophyllide with the centrally 
bound metal. In this process, the free pheophorbide is irre­
versibly removed from the equilibrium with the peripheral 
complex over a period of hours. With Cu(II), Mn(II), and 
Ni(II) no peripheral complex has been observed, as these 
metals are bound instead to the central N-atoms from the 
beginning. The generality of the peripheral interaction of 
Mg 2 + with intact /3-ketoester systems in the Mg-free chlo­
rophyll derivatives may explain its insertion into the por­
phyrin precursors of chlorophyll prior to the biosynthesis of 
ring V.17 

Enolization of the /3-ketoester system in chlorophylls and 
their derivatives is considered responsible for the easy 
' H / 2 H exchange and epimerization at C-IO,18 leading to 
the presence of diastereomeric ChI a' and related pig­
ments19 with inverted configuration at C-10 (7,10-cisoid).6 

Enolization is further responsible for the oxidation20 at 
C-10, for ring V cleavage,21 and for the color change in the 
Molisch phase test,9,22 and photosynthetic models have 
been advanced involving enol participation in oxygen evolu­
tion.23 The formation of peripheral metal complexes is a 
new aspect of chlorophyll chemistry which may be involved 
in the generation of red-shifted chlorophyll species in vitro 
and in vivo. More detailed studies of this system and its pos­
sible role in chlorophyll aggregation24 and reactivity are in 
progress. 
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Substituent Control of Regiospecific Pathways in 
Di-7r-methane Photorearrangements Which Utilize 
Benzo-Vinyl Bonding Schemes 

Sir: 

So vaguely understood are polar substituent influences on 
7r-electron distribution in electronically excited molecules, 
that this question now commands consideration as a major 
unsettled issue in organic photochemistry. Intriguing sub­
tleties are to be anticipated since photoexcited species pos­
sess electronic distributions quite unlike those of their 
ground state progenitors.1 Currently, little basis exists for 

predicting which course a x —* x* rearrangement will take 
when proximal electron-withdrawing or -donating substitu-
ents are introduced.2 With regard to this question, we have 
uncovered striking crossovers in otherwise fully regiospeci­
fic product formation which result upon substituent alter­
ation from cyano to methoxy in the di-ir-methane photo-
rearrangements of the benzonorbornadiene3 and anti-1,8-
benzotricyclo[4.2.2.02'5]deca-3,7,9-triene systems.4 

Sensitized irradiation (3500 A) through Pyrex of dilute 
benzene solutions of I,5 3a,6 and 3b resulted in ready photo-
isomerization with formation of a single product in each in­
stance. Sensitizers ranging in triplet energy from 65.5 
(thioxanthone) to 73.6 kcal/mol (acetophenone) were uti­
lized. Direct irradiation at various wavelengths proved inef­
fective. The 1H NMR spectrum (CCU) of 2, which consists 
of a highly structured aromatic pattern (<5 6.30-6.92, 3 H), 
a methoxyl singlet (3.70, 3 H), and higher field multiplets 
centered at 3.19 (2 H), 2.75 (1 H), 2.38 (1 H), 1.88 (1 H), 
and 0.74 (1 H), differs notably from that of 4c, particularly 

C H 3 O ' * - ' ^ 

1 2 

3O 1 R=CN 4a, R= CN 
b, R = COOCH2CH3 ~b, R=COOCH2CH3 

I 1 R = OCH3 

in the downfield sector. The latter anisole was prepared 
from 4b by sequential saponification, reaction with methyl-
lithium, Baeyer-Villiger rearrangement, hydrolysis, and ex­
posure to dimethyl sulfate in alkali. Treatment of 4a with 
methylmagnesium iodide produced the identical acetyl de­
rivative, thus completing the requisite interconversions. Ab­
solute positional assignment to the substituents in 2 and 4 
follows principally from direct 1H NMR spectral compari­
sons with the homologous compounds of unequivocal struc­
ture described below. Simultaneous irradiation of benzonor­
bornadiene, 1 and 3a, under controlled conditions revealed 
no substantial differences in the individual rates of starting 
material disappearance or product formation.7 

To further assess this dramatic change in bonding prefer­
ence, the photochemistry of 5 and 8 was also examined. Ini­
tial detailed studies with the parent hydrocarbon of this se­
ries4 revealed its triplet state ( £ T = 69-74 kcal/mol) to 
enjoy the capacity for bifurcate reactivity. In this instance, 
bond reorganization along the di-7r-methane pathway lead­
ing to cyclopropane product is slightly favored (1.2:1) over 
the (x2 + T2) bonding process which gives rise to benzo-
basketene. The photorearrangements of 5 and 8 were con­
ducted analogously and likewise followed closely by gas 
chromatography. As with the hydrocarbon, ether.5 was un-
reactive to sensitization by benzophenone (Ej = 69 kcal/ 
mol); however, this was not the case with nitrile 8, a finding 
which signals the lower triplet energy of this diene. Direct 
irradiation failed to promote these isomerizations in both 
instances. 

Whereas triplet excitation of 5 provided a 0.8:1 mixture 
of 6 (oil) and 7 (mp 53-54°), nitrile 8 gave only 9 (mp 62-
63.5°). Complete structure elucidation of 9 was achieved by 
single-crystal X-ray analysis, its crystals belonging to a tri-
clinic space group with a = 9.608 (1) A, b = 7.995 (1) A, c 
= 8.324 (1) A, a = 112.79 ( I ) 0 , /3 = 112.07 (1), and 7 = 
84.03 (1)°. A calculated and measured density indicated 
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